Sliding mode speed auto-regulation technique for robotic tracking

نویسندگان

  • Fabricio Garelli
  • Luis Gracia
  • Antonio Sala
  • Pedro Albertos
چکیده

In advanced industry manufacturing involving robotic operations, the required tasks can be frequently formulated in terms of a path or trajectory tracking. In this paper, an approach based on sliding mode conditioning of a path parametrization is proposed to achieve the greatest tracking speed which is compatible with the robot input constraints (joint speeds). Some distinctive features of the proposal are that: (1) it is completely independent of the robot parameters, and it does not require a-priori knowledge of the desired path either, (2) it avoids on-line computations necessary for conventional analytical methodologies, and (3) it can be easily added as a supervisory block to pre-existing path tracking schemes. A sufficient condition (lower bound on desired tracking speed) for the sliding mode regulation to be activated is derived, while a chattering amplitude estimation is obtained in terms of the sampling period and a tunable first-order filter bandwidth. The algorithm is evaluated on the freely accesible 6R robot model PUMA-560, for which a path passing through a wrist singularity is considered to show the effectiveness of the proposal under hard tracking conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated sliding-mode algorithms in robot tracking applications

An integrated solution based on sliding mode ideas is proposed for robotic trajectory tracking. The proposal includes three sliding-mode algorithms for speed auto-regulation, path conditioning and redundancy resolution in order to fulfill velocity, workspace and C-space constraints, respectively. The proposed method only requires a few program lines and simplifies the robot user interface since...

متن کامل

Robust Optimal Speed Tracking Control of a Current Sensorless Synchronous Reluctance Motor Drive using a New Sliding Mode Controller

This paper describes the robust optimal incremental motion control of a current  sensorless synchronous reluctance motor (SynRM), which can be specified by any desired speed profile. The control scheme is a combination of conventional linear quadratic (LQ) feedback control method and sliding mode control (SMC). A novel sliding switching surface is employed first, that makes the states of the Sy...

متن کامل

Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot

Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...

متن کامل

Improvement Performances of Active and Reactive Power Control Applied to DFIG for Variable Speed Wind Turbine Using Sliding Mode Control and FOC

This paper deals with the Active and Reactive Power control of double-fed induction generator (DFIG) for variable speed wind turbine. For controlling separately the active and the reactive power generated by a DFIG, field oriented control (FOC) and indirect sliding mode control (ISMC) are presented. These non linear controls are compared on the basis of topology, cost, efficiency. The main cont...

متن کامل

Hybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term

This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Robotics and Autonomous Systems

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2011